
Based on all archeological evidence, the design of the trireme most likely pushed the technological limits of the ancient world. After gathering the proper timbers and materials it was time to consider the fundamentals of the trireme design. These fundamentals included accommodations, propulsion, weight and waterline, centre of gravity and stability, strength, and feasibility. All of these variables are dependent on one another; however a certain area may be more important than another depending on the purpose of the ship.
The arrangement and number of oarsmen is the first deciding factor in the size of the ship. For a ship to travel at high speeds would require a high oar-gearing, which is the ratio between the outboard length of an oar and the inboard length; it is this arrangement of the oars which is unique and highly effective for the trireme. The ports would house the oarsmen with a minimal waste of space. There would be three files of oarsmen on each side tightly but workably packed by placing each man outboard of, and in height overlapping, the one below, provided that thalamian tholes were set inboard and their ports enlarged to allow oar movement. Thalamian, zygian, and thranite are the English terms for thalamios (θαλάμιος), zygios (ζύγιος), and thranites (θρανίτης), the Greek words for the oarsmen in, respectively the lowest, middle, and uppermost files of the triereis. Tholes were pins that acted as fulcrums to the oars that allowed them to move. The center of gravity of the ship is low because of the overlapping formation of the files that allow the ports to remain closer to the ships walls. A lower center of gravity would provide adequate stability.
The trireme was constructed to maximize all traits of the ship to the point where if any changes were made the design would be compromised. Speed was maximized to the point where any less weight would have resulted in considerable losses to the ship’s integrity. The center of gravity was placed at the lowest possible position where the Thalamian tholes were just above the waterline which retained the ship’s resistance to waves and the possible rollover. If the center of gravity were placed any higher, the additional beams needed to restore stability would have resulted in the exclusion of the Thalamian tholes due to the reduced hull space. The purpose of the area just below the center of gravity and the waterline known as the hypozomata (ὑποζώματα) was to allow bending of the hull when faced with up to 90 kN of force. The calculations of forces that could have been absorbed by the ship are arguable because there is not enough evidence to confirm the exact process of jointing used in ancient times. In a modern reconstruction of the ship, a polysulphide sealant was used to compare to the caulking that evidence suggests was used; however this is also contentious because there is simply not enough evidence to authentically reproduce the triereis seams.
Triremes required a great deal of upkeep in order to stay afloat, as references to the replacement of ropes, sails, rudders, oars and masts in the middle of campaigns suggest. They also would become waterlogged if left in the sea for too long. In order to prevent this from happening, ships would have to be pulled from the water during the night. The use of lightwoods meant that the ship could be carried ashore by as few as 140 men. Beaching the ships at night, however, would leave the troops vulnerable to surprise attacks. While well-maintained triremes would last up to 25 years, during the Peloponnesian War, Athens had to build nearly 20 triremes a year to maintain their fleet of 300.
The Athenian trireme had two great cables of about 47 mm in diameter and twice the ship’s length called hypozomata (undergirding), and carried two spares. They were possibly rigged fore and aft from end to end along the middle line of the hull just under the main beams and tensioned to 13.5 tonnes force. The hypozomata were considered important and secret: their export from Athens was a capital offense. This cable would act as a stretched tendon straight down the middle of the hull, and would have prevented hogging. Additionally, hull plank butts would remain in compression in all but the most severe sea conditions, reducing working of joints and consequent leakage. The hypozomata would also have significantly braced the structure of the trireme against the stresses of ramming, giving it an important advantage in combat. According to material scientist J.E. Gordon: “The hupozoma was therefore an essential part of the hulls of these ships; they were unable to fight, or even to go to sea at all, without it. Just as it used to be the practice to disarm modern warships by removing the breech-blocks from the guns, so, in classical times, disarmament commissioners used to disarm triremes by removing the hupozomata.”
Source: Wikipedia
Be the first to comment